Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase.

نویسندگان

  • M Li Calzi
  • L B Poole
چکیده

AhpF, the alkyl hydroperoxide reductase component which transfers electrons from pyridine nucleotides to the peroxidase protein, AhpC, possesses two redox-active disulfide centers in addition to one FAD per subunit; the primary goal of these studies has been to test for the requirement of one or both of these disulfide centers in catalysis. Two half-cystine residues of one center (Cys345Cys348) align with those of the homologous Escherichia coli thioredoxin reductase (TrR) sequence (Cys135Cys138), while the other two (Cys129Cys132) reside in the additional N-terminal region of AhpF which has no counterpart in TrR. We have employed site-directed mutagenesis techniques to generate four mutants of AhpF, including one which removes the N-terminal disulfide (Ser129Ser132) and three which perturb the TrR-like disulfide center (Ser345Ser348, Ser345Cys348, and Cys345Ser348). Fluorescence, absorbance, and circular dichroism spectra show relatively small perturbations for mutations at the disulfide center proximal to the flavin (Cys345Cys348) and no changes for the Ser129Ser132 mutant; identical circular dichroism spectra in the ultraviolet region indicate unchanged secondary structures in all mutants studied. Oxidase and transhydrogenase activities are preserved in all mutants, indicating no role for cystine redox centers in these activities. Both DTNB and AhpC reduction by AhpF are dramatically affected by each of these mutations, dropping to less than 5% for DTNB reductase activity and to less than 2% for peroxidase activity in the presence of AhpC. Reductive titrations confirm the absence of one redox center in each mutant; even in the absence of Cys345Cys348, the N-terminal redox center can be reduced, although only slowly. These results emphasize the necessity for both redox-active disulfide centers in AhpF for catalysis of disulfide reductase activity and support a direct role for Cys129Cys132 in mediating electron transfer between Cys345Cys348 and the AhpC active-site disulfide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction.

The two-component alkyl hydroperoxide reductase enzyme system from Salmonella typhimurium catalyzes the pyridine nucleotide-dependent reduction of alkyl hydroperoxide and hydrogen peroxide substrates. This system is composed of a flavoenzyme, AhpF, which is related to the disulfide-reducing enzyme thioredoxin reductase, and a smaller protein, AhpC, which lacks a chromophoric cofactor. We have d...

متن کامل

Attachment of the N-terminal domain of Salmonella typhimurium AhpF to Escherichia coli thioredoxin reductase confers AhpC reductase activity but does not affect thioredoxin reductase activity.

AhpF of Salmonella typhimurium, the flavoprotein reductase required for catalytic turnover of AhpC with hydroperoxide substrates in the alkyl hydroperoxide reductase system, is a 57 kDa protein with homology to thioredoxin reductase (TrR) from Escherichia coli. Like TrR, AhpF employs tightly bound FAD and redox-active disulfide center(s) in catalyzing electron transfer from reduced pyridine nuc...

متن کامل

Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system.

AhpC and AhpF from Salmonella typhimurium undergo a series of electron transfers to catalyze the pyridine nucleotide-dependent reduction of hydroperoxide substrates. AhpC, the peroxide-reducing (peroxiredoxin) component of this alkyl hydroperoxidase system, is an important scavenger of endogenous hydrogen peroxide in bacteria and acts through a reactive, peroxidatic cysteine, Cys46, and a secon...

متن کامل

Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.

The catalytic properties of cysteine residues Cys46 and Cys165, which form intersubunit disulfide bonds in the peroxidatic AhpC protein of the alkyl hydroperoxide reductase (AhpR) system from Salmonella typhimurium, have been investigated. The AhpR system, composed of AhpC and a flavoprotein reductase, AhpF, catalyzes the pyridine nucleotide-dependent reduction of organic hydroperoxides and hyd...

متن کامل

Activity of one of two engineered heterodimers of AhpF, the NADH:peroxiredoxin oxidoreductase from Salmonella typhimurium, reveals intrasubunit electron transfer between domains.

AhpF, the flavoprotein reductase component of the Salmonella typhimurium alkyl hydroperoxide reductase system, catalyzes the reduction of an intersubunit disulfide bond in the peroxidatic active site of the system's other component, AhpC, a member of the peroxiredoxin family. Previous studies have shown that AhpF can be dissected into two functional units, a thioredoxin reductase-like C-terminu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 36 43  شماره 

صفحات  -

تاریخ انتشار 1997